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Problem 1 (35 points). Refer to Figure 1.1. Balls a and b of masses ma and mb respectively are placed
on a smooth, electrically insulated, horizontal surface and joined by a light spring of natural length l0
and spring constant k0.

b a
l0

Figure 1.1: Two balls joined by a spring.

(1) When t = 0, the spring is at its natural length, a has a rightward velocity of magnitude v0, and b
is at rest. Assuming that the spring experiences elastic deformation throughout the motion, find
the time-dependence of the velocities of a and b, va(t) and vb(t) respectively, for all t > 0.

(2) Suppose each ball acquires the same charge such that the equilibrium length of the spring is L0.
We denote Coulomb’s constant by K. Find the magnitude of said charge q and the frequency f
of small oscillations of the system.

Problem 2 (35 marks). Binary star systems are important observation targets for astronomers. We
shall model one of these in this problem. Two stars of masses M and m, modelled as point masses,
orbit about their barycentre in circular orbits with period T0. Star M suddenly explodes and loses some
of its mass ∆M . We assume that the explosion occurs instantaneously and is isotropic relative to star
M , such that the instantaneous velocity of star M ′ = M −∆M after the explosion remains the same
as the velocity of M before, and that the explosion and the resulting ejecta have no effect on star m.
We are given the gravitational constant G and neglect the effects of general relativity.

(1) Find the distance r0 between M and m before the explosion.

(2) If M ′ and m still orbit each other after the explosion, find the period T1 of this motion.

(3) If M ′ and m are ejected from orbit as a result of the explosion, derive all the conditions in order
for this to be true, in terms of M , m, and ∆M .
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Problem 3 (35 points). Children who are well acquainted with the playground swing can force the seat
to swing higher and higher by standing up and squatting at appropriate times.1 A boy of mass m is
playing with a swing whose seat and suspension rods (not chains) are light and rigid. We assume that
all the boy’s mass is concentrated at his centre of mass. When the boy stands, the distance between his
centre of mass and the pivot of the swing is l, and when he squats, this distance is l + d. Realistically
the boy should take a few moments to switch between the two postures, but we will ignore this. We
model the situation as follows (see Figure 3.1 for an illustration): The boy squats instantaneously at
point A, where he is momentarily at rest, from a standing position. Then he swings to point B, which
is lower than A by h1, at which point he stands up (also instantaneously), such that his final radial
speed is zero. Finally, the boy swings to point C, where he is again momentarily at rest. The process
repeats in the opposite direction and so on, back and forth, such that the child swings higher with each
successive swing. We assume that the force between the child and the seat is parallel to the suspension
rods at all times. Take the gravitational potential energy to be zero at B.
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Figure 3.1: A model of a boy on a swing. The solid lines indicate the trajectory of the boy’s centre of
mass.

(1) Assuming that no mechanical energy is lost as the boy maintains his posture, e.g. as he squats
from A′ to B or stands from B′ to C, find the boy’s mechanical energy during each of the four
stages of his motion, A → A′ → B → B′ → C. Find also the change in his mechanical energy
from A to C.

(2) We now attempt to model the mechanical energy loss even as the boy maintains his posture. We
assume that the relationship between the energy loss ∆E and the absolute value of the change in
height ∆h is given by

∆E =

{
k1mg(h0 + ∆h) when the boy is squatting, and

k2mg(h′0 + ∆h) when the boy is standing,

where 0 < k1, k2 < 1, h0, and h′0 are constants and g is the gravitational acceleration. Taking the
horizontal at B as the ground, find

1Translator’s note. It was common for Chinese children (and perhaps, even now, daring mad lads both in China and
elsewhere) to stand, rather than sit, on the seats of playground swings. Due to sanitary and safety concerns, we are not
recommending that you try this at your local playground.
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(i) the relationship between hn, the boy’s distance from the ground when he becomes momen-
tarily at rest for the nth time (counting point A as the first time, as shown in Figure 3.1),
and hn+1, the distance for the (n+ 1)th time; and

(ii) the relationship between hn and h1 and between hn+1 − hn and h1.

Problem 4 (35 points). Refer to Figure 4.1. A square wire loop abcd having uniform density, mass m,
side length l, and resistance R lies in a uniform magnetic field of magnitude B which points vertically
upwards. The loop can rotate freely about the axis OO′, which passes through the midpoints of sides ad
and bc. The two ends of the loop are connected to the leads P and Q. OO′ and the x-axis are coplanar
and orthogonal. We neglect the self-inductance of the wire loop.

x

O′

O
P

a

b
c

d
Q

θ0

B

Figure 4.1: A spinning wire loop.

(1) Find the moment of inertia J of the wire about OO′.

(2) When t = 0, the wire is at rest and its plane makes a small angle θ0 with the x-axis. At this instant,
we force a steady current I through the wire in the direction given by P → a→ b→ c→ d→ Q.
Find the subsequent relationship between θ, θ̇, and θ̈, where θ is the angle between the the plane
of the wire and the x-axis.

(3) When t = t0 > 0, the wire reaches a horizontal position again, whereupon we disconnect the
current source between leads P and Q. Describe the subsequent motion of the wire. Hence, derive
an expression for the potential difference VPQ between P and Q.

(4) We allow the wire to undergo the above motion for a period of time. We short leads P and Q
when the angle θ1 between the plane of the wire and the x-axis is somewhere within the range
π/4 ≤ θ1 ≤ 3π/4. The wire will come to rest after rotating through an angle α. Find the
relationship between α and θ1. Find also the minimum value of α.
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Problem 5 (35 points). Refer to Figure 5.1. A thin disc of radius R is placed in the xy-plane such that
its centre is at the origin O. The region above the xy-plane (i.e. z > 0) is filled with a uniform electric
field with magnitude E pointing in the −z direction, whereas the cylindrical region bounded by the
xy-plane below and the cylinder with infinite length whose base is said disc (i.e. z > 0 and x2+y2 < R2)
is filled with a uniform magnetic field B pointing in the +z direction. The region outside this cylinder
has zero magnetic field. Now suppose we fire particles carrying charge q, mass m, and speed v from O
in all directions above the xy-plane in an isotropic manner (i.e. the probability of being fired in a certain
direction is the same regardless of said direction). We ignore the effects of gravity and the interaction
between the charges.

O
x

y
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B

Figure 5.1: A disc suspended along the boundary of an electromagnetic field.

(1) Suppose that all collisions of the charges with the disc are elastic, and that η = 50% of the charges
are constrained by the electric and magnetic fields to remain within the cylindrical region. Find
the radius R of the disc.

(2) We now introduce a model of non-elastic collisions. Suppose that, when a charge collides with
the disc, the direction of the perpendicular component of its velocity is reversed, while that of the
parallel component is unperturbed. Suppose further that the magnitudes of both components are
reduced by the same proportion such that the kinetic energy of the charge is reduced by 10%.

(i) Consider the projection of the charge’s location onto the xy-plane. Find the length of the
path travelled by the projection during the period between the ejection of the charge and its
first collision with the disc.

(ii) Now consider the charge whose projection traverses the greatest distance as described in (i).
Find the distance travelled by the particle from its ejection until it comes to rest on the disc.

We are given the integral∫ √
1 + u2 du =

1

2
u
√

1 + u2 +
1

2
ln
(
u+
√

1 + u2
)

+ C,

where C is a constant of integration.
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Problem 6 (35 points). Consider a capillary tube having length 6.00 cm, inner radius 0.500 mm, and
outer radius 5.00 mm.

(1) We fix the tube in a vertical position and inject water into it, such that a small amount of water
protrudes from the lower end but does not fall. The column of water above it remains at rest due
to the effects of surface tension. Given that the distance between the centre of the upper end of
the column and the lowest point of the column is 3.50 cm, find the radius of curvature a of the
lower interface between the water and the air.

(2) We remove the water in (1) and submerge 1/3 of the tube in water. An external upward force is
applied to the tube such that it remains at rest. Find the magnitude of this force.

We are given that the density of glass is twice that of water, the density of water 1.00× 103 kg m−3, the
coefficient of surface tension of water 7.27× 10−2 N m−1, and the gravitational acceleration 9.80 m s−2.
We may assume that the angle θ between the upper interface and the glass wall is zero.

Problem 7 (35 points). (1) The equivalence principle, first elucidated by Albert Einstein in 1911,
states that the laws of physics in a reference frame with gravity present are the same as those
in some accelerating reference frame without gravity, provided that the acceleration is equal to a
certain value. We study this principle by considering the following two examples.

(i) When a beam of light travels from a place of low gravitational potential to another place
of a high gravitational potential, its wavelength increases. This phenomenon is known as
gravitational redshift. Now consider a spherical body (say, a planet) with uniform density.
Suppose that a beam of light with wavelength λ0 is emitted vertically upwards from a point
source A near the surface of the planet. The light beam is detected by a fixed receiver B
vertically above A such that AB = L. Find the wavelength λ′ of the light detected by B.

We are given the mass of the planet M , its radius R (where R� L), the speed of light c, and
the gravitational constant G. We may assume the weak field approximation applies, i.e. we
may freely use the results of the Newtonian theory of gravity.

(ii) Refer to Figure 7.1. Suppose that a box whose length is L is suspended in free space. A
laser source A and a receiver B are fixed at the lower and upper ends of the box respectively.
When time t = 0, the box begins to accelerate from rest with magnitude a along the direction

of
−→
AB, where aL � c2. Simultaneously, a laser beam of wavelength λ0 is emitted from A.

Using the results of special relativity, find the wavelength λ′′ of the light received at B.

A

B

aL

Figure 7.1: A gravity-independent demonstration of gravitational redshift.

(iii) Compare the results of (i) and (ii). How large should a be, in order for us to have λ′ = λ′′?
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(2) Gravitational redshift was first observed by Mössbauer spectroscopy near the Earth’s surface, since
the Mössbauer spectrometer allows physicists to determine the energy of gamma ray photons to
a high precision. The setup is as follows: As in (1)(i), we place a fixed gamma ray source whose
frequency is ν0 at a point A near Earth’s surface. We place a Mössbauer spectrometer at point
B. We now make the following key assumption: that the spectrometer can only detect photons
with frequency ν0 as measured in the reference frame where it is at rest. In order for the emitted
photons to be detectable, the spectrometer must maintain a downward velocity. This experiment
was conducted multiple times in a tower of the Jefferson Physical Laboratory at Harvard University
by a team led by R. Pound, G. Rebka, and J. Snider from 1960 to 1964, in which L = 22.6 m.
Find the speed of the spectrometer at the instant when the photons from A were detected.

We are given the gravitational acceleration g = 9.80 m s−2 and the speed of light in vacuum
c = 3.00× 108 m s−1.

Problem 8. A sample of gallium nitride on silicon (GaN/Si) was prepared by depositing a thin layer
of gallium nitride uniformly on a silicon wafer, as shown in Figure 8.1.

silicon base

gallium nitride

Figure 8.1: A wafer of GaN/Si.

(1) When a beam of light with wavelengths in the range 400 nm–1200 nm is orthogonally incident upon
the GaN/Si wafer, and the reflected light measured, we observe that two particular wavelengths
are amplified by thin-film interference, one of which is 600 nm. The relationship between the
refractive index n of the GaN and the wavelength λ of incident light from a vacuum, i.e. the
dispersion relation, is given by

n2 = 2.262 +
330.12

λ2 − 265.72
,

whereas the refractive index of silicon is within the range 3.49–5.49. By considering reflection at
the GaN surface and the GaN/Si interface, determine the thickness of the GaN layer and the value
of the second amplified wavelength.

(2) On the other side of the wafer, two kinds of spectrum-selective materials are coated uniformly
on each half of the wafer, as shown in Figure 8.2. For light whose wavelength is a certain value,
the coating on the left half is completely absorbent, while that on the right half is completely
reflective.

left half right half

silicon base

gallium nitride

spectrum-selective material

Figure 8.2: A coated GaN/Si wafer.

As shown in Figure 8.3, we suspend the wafer from a fixed support with two strings whose lengths
are both a such that the strings are vertical. The wafer has length a and width b, and is allowed
to rotate about the axis OO′, which causes it to move up and down simultaneously. The wafer is
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Figure 8.3: A schematic of the suspended wafer.

initially at rest. We shine a strong laser beam whose wavelength has the aforementioned property
on the spectrum-sensitive coating such that the light is orthogonally incident upon and uniformly
distributed over the surface of the wafer, and wait until the wafer has rotated about OO′ to a
position where it is stationary again. The direction of the beam remains unchanged throughout
the process. The coating is illuminated at all times. We neglect the effects of the radiation on the
thin edges of the wafer.

We are given the thickness d′ and density ρ′ of the silicon wafer, the thickness d and density ρ of
the GaN layer, and neglect the mass of the coating. We are also given the vacuum permittivity
ε0 and the gravitational acceleration g. Find the rms value E of the electric field associated with
the laser such that the wafer rotates through a given angle α.

(3) Taking the values E = 5.00× 104 V m−1, d′ = 3.00× 10−4 m, ρ′ = 2.33× 103 kg m−3, ρ =
6.10× 103 kg m−3, ε0 = 8.85× 10−12 F m−1, and g = 9.80 m s−2, determine the value of α.
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