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Note. All numbered equations are marking points (but I am not privy to how much each of them are
worth), in that if the marker sees the numbered equation on your answer script (or a similar expression),
they will award points accordingly. You may wish to use these as a gauge for how many points you will
obtain if you participate in the actual CPhO.

Problem 1 (35 points). Refer to Figure 1.1. A solid hemisphere of radius R and mass M lies at rest
upon a smooth tabletop. A smaller solid sphere of uniform density, mass m, and radius r rests upon
the apex of the hemisphere. At some instant, the sphere is given a small perturbation and begins to
move along the surface of the hemisphere. In the course of the sphere’s motion, its position with respect
to the hemisphere is described by the angle θ, where θ is the angle between the vertical and the line
joining the centres of each body. We are given the moment of inertia of the sphere 2

5
mr2 about its axis

of symmetry, the coefficient of kinetic friction µ between the sphere and hemisphere, the assumption
that the maximum static friction is equal to the kinetic friction, and the gravitational acceleration g.

θ
R

r

Figure 1.1: A sphere rolling down a hemisphere.

(1) (15 points). The sphere rolls without slipping for a while after it begins to move. When θ = θ1,
find the magnitudes of the hemisphere’s velocity VM(θ1) and its acceleration aM(θ1) during this
motion.

(2) (15 points). The sphere begins to slip when θ = θ2. Find a condition, involving VM(θ2) and
aM(θ2), satisfied by θ2.

(3) (5 points). The sphere loses contact with the hemisphere when θ = θ3. Find the speed of the
centre of mass of the sphere relative to the hemisphere.
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Solution 1:

(1) Since no external forces having nonzero horizontal components act on the bodies, the hori-
zontal component of the momentum of the system is conserved:

−MVM +m[(R + r)θ̇ cos θ − VM ] = 0. (1.1)

Let ω be the angular speed of the small sphere. Rolling without slipping gives

rω = (R + r)θ̇. (1.2)

For an explanation of why this works, see e.g. the official solution to the Pan Pearl River
Delta Physics Olympiad 2018 Paper 1 Problem 2.

Since no work is done against friction, total mechanical energy is conserved:

mg(R+ r)(1− cos θ) =
1

2
MV 2

M +
1

2
m

{[
(R + r)θ̇ cos θ − VM

]2
+
[
(R + r)θ̇ sin θ

]2}
+

1

2
Iω2,

(1.3)
where I = 2

5
mr2. Solving (1.1), (1.2), and (1.3) simultaneously, we obtain the speed of the

large hemisphere when θ = θ1,

VM =

√
10m2(R + r)g(1− cos θ1) cos2 θ1

[7(M +m)− 5m cos2 θ1] (M +m)
(1.4)

or

V 2
M =

10m2(R + r)g(1− cos θ1) cos2 θ1
[7(M +m)− 5m cos2 θ1] (M +m)

.

Differentiating the squared equation with respect to t, we obtain

2VMaM =

10mg(−2 cos θ + 3 cos2 θ)[7(M +m)− 5m cos2 θ]
− 100m2g(1− cos θ) cos3 θ

[7(M +m)− 5m cos2 θ]2
· m(R + r) sin θ · θ̇

M +m
.

From (1.1) we know that

m(R + r)θ̇

M +m
=

VM
cos θ

,

so we obtain the acceleration of the hemisphere when θ = θ1,

aM(θ1) = −5mg sin θ1 [14(M +m)− 21(M +m) cos θ1 + 5m cos3 θ1]

[7(M +m)− 5m cos2 θ1]
2 . (1.5)

[Alternative. We could also set up equations using Newton’s second law and solve from
there; see part (2).]

(2) Let N and f be the normal force and friction on the sphere when θ ≤ θ2. By Newton’s
second law, we obtain

N sin θ − f cos θ = MaM . (1.6)
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Consider the motion of the small sphere in the rest frame of the large hemisphere. We have

mg cos θ −N −maM sin θ = m
v2C

R + r
, (1.7)

mg sin θ +maM cos θ − f = m
dvC
dt

, (1.8)

where vC is the speed of the small sphere in the rest frame of the large hemisphere,

vC = rω = (R + r)θ̇ =
M +m

m cos θ
VM , (1.9)

in which we have used (1.1). Considering the rotation of the small sphere in its rest frame,
we have

fr = I
dω

dt
. (1.10)

Solving (1.6), (1.7), (1.8), (1.9), and (1.10) simultaneously, we obtain

f =
2m

7
(g sin θ + aM cos θ), (1.11)

N = mg cos θ −maM sin θ −m v2C
R + r

. (1.12)

Rolling without slipping requires f ≤ µN . Equality is achieved when θ = θ2, past which the
small sphere begins to slip relative to the large hemisphere. Substituting (1.11) and (1.12)
into the equation f = µN , we obtain

2m

7
[g sin θ2 + aM(θ2) cos θ2] = µ

[
mg cos θ2 −maM(θ2) sin θ2 −m

v2C(θ2)

R + r

]
.

Substituting (1.9) into the above equation yields

2

7
g sin θ2 − µg cos θ2 + aM(θ2)

(
2

7
cos θ2 + µ sin θ2

)
+
µ(M +m)2V 2

M(θ2)

(R + r)m2 cos2 θ2
= 0, (1.13)

where the expressions for VM(θ2) and aM(θ2) are given by (1.4) and (1.5) respectively.

(3) When the sphere loses contact with the sphere, N = 0, at which point the acceleration
of the large hemisphere is zero. Therefore, at this moment the speed of the small sphere
relative to the large hemisphere (vm(θ3)) satisfies the equation

mg cos θ3 = m
v′2C

R + r
. (1.14)

So we finally have
v′C =

√
(R + r)g cos θ3. (1.15)
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Problem 2 (35 points). Both plates (1 and 2) of a parallel-plate capacitor have area S, are fixed
horizontally with separation d, and are connected to the circuit shown in Figure 2.1, where U is the
emf generated by the power source. An uncharged conducting plate (3) of mass m and having the same
dimensions as plates 1 and 2 is placed atop plate 2 and contacts it well. The whole setup is placed inside
a vacuum chamber with vacuum permittivity ε0. When the switch K is closed, plate 3 colliides with
plates 1 and 2 in an alternating fashion and undergoes reciprocating motion. We make the following
assumptions: the electric field between 1 and 2 is uniform; the resistance of the wires and the internal
resistance of the cell are small, so the characteristic charging and discharging times can be neglected;
when plate 3 makes contact with plates 1 or 2, the free charge within the contacting plates reaches
equilibrium instantly; and all collisions are inelastic. The gravitational acceleration is g.

U

K

2

1

3

Figure 2.1: A bouncing metal plate.

(1) (17 points). Find the minimum possible value of U .

(2) (18 points). Find the period of the reciprocating motion plate 3 is undergoing.

Note. The integral ∫
dx√

ax2 + bx
=

1√
a

ln
(

2ax+ b+ 2
√
a
√
ax2 + bx

)
+ C

is given, where a > 0 and C is a constant of integration.

Solution 2:

(1) Just before plate 3 leaves plate 2, the charge on plate 3 is given by

Q = C0U =
ε0S

d
U.

Suppose that after plate 3 leaves plate 2, the charge on each surface is as shown in Figure 2.2.
From charge conservation we obtain

σ1 − σ2 = σ =
Q

S
=
ε0
d
U. (2.1)

Let E1 and E2 be the electric field in between plates 1 and 3 and plates 3 and 2 respectively.
We have E1 = σ1/ε0 and E2 = σ2/ε0. Substituting these into (2.1) and cancelling yields

E1 − E2 =
U

d
. (2.2)
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Since the potential across the capacitors in series is U , we also have

E2x− E1(d− x) = U. (2.3)

Solving (2.2) and (2.3) simultaneously, we obtain

E1 =
U

d

d+ x

d
, (2.4)

E2 =
U

d

x

d
. (2.5)

Note also that σ1 = ε0E1 and σ2 = ε0E2. Taking upwards as positive hereafter, the electric
force acting on plate 3 is given by

Fe = −σ2S ·
E2

2
+ σ1S ·

E1

2
=
ε0S

2
(E2

1 − E2
2) = ε0S(E1 − E2)

(
E1 + E2

2

)
= ε0S

U

d

(
E1 + E2

2

)
= ε0S

U

d
· U
d

(
2x+ d

2d

)
=
ε0SU

3

2d3
(2x+ d).

(2.6)

Thus, the net force acting on plate 3 is given by

Fnet = Fe −mg =
ε0SU

3

2d3
(2x+ d)−mg =

(
ε0SU

3

2d2
−mg

)
+
ε0SU

3

d3
x.

Hence we obtain the acceleration of plate 3 at the position indicated in Figure 2.2,

a =
Fnet

m
=

(
ε0SU

3

2md2
− g
)

+
ε0SU

3

md3
. (2.7)

We need ε0SU
3/2md2 ≥ g in order for plate 3 to rise. The acceleration thereafter is always

upwards, so plate 3 is guaranteed to arrive at plate 1. Thus

Umin =

√
2md2g

ε0S
. (2.8)

(2) From (2.7) we know that a = a0 + Bx, where a0 = ε0SU
3/2md2 − g and B = ε0SU

3/md3.
Thus

a = v
dv

dx
= a0 +Bx

v dv = (a0 +Bx) dx∫ v

0

v′ dv′ =

∫ x

0

(a0 +Bx′) dx′

1

2
v2 = a0x+

1

2
Bx2

v =
√

2a0x+Bx2,

where v(x) is the speed of plate 3 in Figure 2.2. Thus we have

dt =
dx√

2a0x+Bx2
. (2.9)
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Integrating on both sides, we obtain the time taken for plate 3 to travel from plate 2 to
plate 1 (where x = d),

t1 =

∫ t1

0

dt =

∫ d

0

dx√
2a0x+Bx2

=

√
1

B
ln

[
(3Bd− 2g) +

√
8Bd(Bd− g)

Bd− 2g

]

=
d

U

√
md

ε0S
ln

[
(3ε0SU

2 − 2mgd2) + 2U
√

2ε0S(ε0SU2 −mgd2)
ε0SU2 − 2mgd2

]
. (2.10)

Now we consider the subsequent fall of plate 3. When plate 3 collides with plate
1, its speed becomes zero, and it begins falling due to both the effects of gravity and the
electric field until it collides inelastically with plate 2, whereupon the process repeats. The
computation is similar to the above (but with the E’s and σ’s primed, as shown in Figure
2.3) and includes marking points (2.11)–(2.18) (roughly corresponding to (2.1)–(2.7) and
(2.9) respectively), which are omitted in the interests of the translator’s sanity and the
health of his poor fingers. After a series of laborious steps (read: bashing) and many tears,
we finally obtain the time taken for plate 3 to travel from plate 1 back to plate 2,

t2 =
d

U

√
md

ε0S
ln

[
(3ε0SU

2 + 2mgd2) + 2U
√
ε0S(2ε0SU2 +mgd2)

ε0SU2 + 2mgd2

]
. (2.19)

Hence we finally obtain

T = t1 + t2 =
d

U

√
md

ε0S

{
ln

[
(3ε0SU

2 − 2mgd2) + 2U
√

2ε0S(ε0SU2 −mgd2)
ε0SU2 − 2mgd2

]

+ ln

[
(3ε0SU

2 + 2mgd2) + 2U
√
ε0S(2ε0SU2 +mgd2)

ε0SU2 + 2mgd2

]}
.

(2.20)

(Phew!)

2 σ2

1 −σ1

3 σ1

−σ2E2

E1

x

Figure 2.2: The electric field as plate 3 rises.

2 σ′2

1 −σ′1

3 σ′1

−σ′2E ′2

E ′1

x

Figure 2.3: The electric field as plate 3 falls.
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Problem 3 (35 points). Refer to Figure 3.1. An inextensible, massive string of uniform linear density
λ is threaded through a disc-shaped, fixed pulley of radius R, whose axle is a distance L from the
floor. The system is initially at rest. When t = 0, the pulley acquires a constant angular speed ω
(which is maintained throughout) in the anticlockwise direction and causes the string to move as well.
The coefficient of kinetic friction between the pulley and the string is µ. The suspended parts of the
string are vertical throughout the motion, the ends of the string never leave the floor, and the piles of
string resting on the floor are concentrated at two points. We are given the gravitational acceleration
g. Denote the tension at the points on the left and right hand sides of the pulley, where the string is
tangent to the pulley, by T1 and T2 respectively.

O

floor

R

L

ω

Figure 3.1: A massive string threaded through a rotating pulley. The grey blobs indicate piles of string.

(1) (20 points). Write down a system of dynamical equations for any short length of string at all
possible locations on the string, for the time before the speed of the string reaches a maximum.
Consider three cases: the two suspended parts and the part threaded through the pulley.

(2) (15 points). Find the maximum possible speed of the string.

Note. The identities

dy

dx
+ αy = e−αx

d(yeαx)

dx
,∫

eαx cosx dx =
eαx

1 + α2
(α cosx+ sinx) + C1, and∫

eαx sinx dx =
eαx

1 + α2
(α sinx+ cosx) + C2

are given, where C1 and C2 are constants of integration.

Solution 3:

(1) We first treat the vertical part on the left, taking downwards as positive. Let v be the
speed of the string. In time dt, the pulley releases a piece of string dx = v dt long, and
simultaneously another piece of string of the same length is added to the pile, so the addi-
tional momentum from this process is zero. Thus we obtain the change in momentum per
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unit time, λL dv. Now the deposited length of string does not contribute any force on the
suspended length, so the net force on it is λLg − T1, i.e. the impulse on it is (λLg − T1) dt.
We thus obtain

− T1 + λLg = λL
dv

dt
. (3.1)

We now consider the vertical part on the right, but we take upwards as positive. We
first consider a small length of string dx = v dt lifted from the ground. Its momentum
instantaneously changes from 0 to λ dx v = λv2 dt. Now the force acting on the suspended
segment on the right is given by T ′ − λ dx g, where T ′ is the tension of the string near the
floor. We thus obtain the equation

T ′ − λ dx g = λv2,

and after omitting the infinitesimal term obtain

T ′ = λv2.

The change in momentum of the segment on the right is given by λL dv, and the net force
acting upon it is given by T2 − λLg − T ′ = T2 − λLg − λv2. Thus we obtain

T2 − λv2 − λLg = λL
dv

dt
. (3.2)

Finally, we consider the segment threaded through the pulley, and take anticlockwise as
positive. Refer to Figure 3.2. For a length of string subtending an angle of ∆ϕ at the centre
of the pulley, its mass is λR∆ϕ, the tension at each end are given by T (ϕ+ ∆ϕ) and T (ϕ),
the normal force on it is NR∆ϕ, where N is the normal force per unit length acting on
this curved segment of the string. Thus we may set up the dynamical equations along the
tangential and normal direction, like so:

T (ϕ+ ∆ϕ) cos
∆ϕ

2
− T (ϕ) cos

∆ϕ

2
+ µNR∆ϕ− λR∆ϕg cosϕ = λR∆ϕ

dv

dt
,

T (ϕ+ ∆ϕ) sin
∆ϕ

2
+ T (ϕ) sin

∆ϕ

2
−NR∆ϕ+ λR∆ϕg sinϕ = λR∆ϕ

v2

R
.

When we take ∆ϕ→ 0, the above system of equations become

dT

dϕ
+ µNR− λRg cosϕ = λR

dv

dt
, (3.3)

T −NR + λRg sinϕ = λR
v2

R
. (3.4)

Eliminating N from the above system gives

dT

dϕ
+ µT − λRg(cosϕ− µ sinϕ) = λR

(
dv

dt
+ µ

v2

R

)
. (3.5)

(2) Since ω can take a range of values, intuitively we find that there are two possible cases: (1) ω
is so large that even when v reaches its maximum, there is still relative motion between the
pulley and the string; and (2) ω is sufficiently small that when this happens, the string sticks
to the pulley such that the maximum speed would be given by Rω.
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Alternative 3.1. Note that only T1 and T2 remain unknown in (3.1) and (3.2), so we need
only obtain a relationship between T1 and T2 using (3.5), and we may dispense with T (ϕ)
altogether. By the first given identity we obtain

dT

dx
+ µT = e−µϕ

d(Teµϕ)

dx
. (3.6)

So (3.5) can be rewritten as

d(Teµϕ)

dx
= λRgeµϕ(cosϕ− µ sinϕ) + eµϕλR

(
dv

dt
+ µ

v2

R

)
, (3.7)

and after integration from 0 to π on both sides we obtain

T1e
µπ − T2 = λRg

(∫ π

0

eµϕ cosϕ dϕ− µ
∫ π

0

eµϕ sinϕ dϕ

)
+ λR

(
dv

dt
+ µ

v2

R

)∫ π

0

eµϕ dϕ

(3.8)

T2 − T1eµπ = λRg
2µ

1 + µ2
(eµπ + 1)− λR

µ
(eµπ − 1)

(
dv

dt
+ µ

v2

R

)
. (3.9)

Alternative 3.2 (Full derivation of T (ϕ)). Let

T = T̄ + C1 sinϕ+ C2 cosϕ+ C3 (3.6)

where T̄ , C1, C2, and C3 are constants to be determined. Substituting this into (3.5), we
obtain

C1 = λRg
1− µ2

1 + µ2
,

C2 = λRg
2µ

1 + µ2
,

C3 =
λR

µ

(
dv

dt
+ µ

v2

R

)
.

(3.7)

Then the differential equation of interest becomes

dT̄

T̄
= −µ dϕ

and, upon integration, we obtain
T̄ = T̄0e

−µϕ, (3.8)

from which we conclude

T = T̄0e
−µϕ + λRg

1− µ2

1 + µ2
sinϕ+ λRg

2µ

1 + µ2
cosϕ+

λR

µ

(
dv

dt
+ µ

v2

R

)
.

At the points on both sides of the pulley, where the string is tangent to the pulley, and
where ϕ = 0 and ϕ = π, the tension is given by T2 = T (0) and T1 = T (π), so we obtain

T2 = T̄0 + λRg
2µ

1 + µ2
+
λR

µ

(
dv

dt
+ µ

v2

R

)
T1 = T̄0e

−µπ − λRg 2µ

1 + µ2
+
λR

µ

(
dv

dt
+ µ

v2

R

)
,

i.e.

T2 − T1eµπ = λRg
2µ

1 + µ2
(eµπ + 1)− λR

µ
(eµπ − 1)

(
dv

dt
+ µ

v2

R

)
. (3.9)
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O
x

y

R∆ϕ

ϕ
∆ϕ

Figure 3.2: An analysis of the segment of string threaded through the pulley.

From (3.1) and (3.2), we also obtain

T2 − T1eµπ = λv2 − λLg(eµπ − 1) + λL(eµπ + 1)
dv

dt
. (3.10)

Setting the RHS’s of (3.9) and (3.10) equal to each other, we obtain

Lg(eµπ − 1) +Rg
2µ

1 + µ2
(eµπ + 1)− eµπv2 =

(
L(eµπ + 1) +

R

µ
(eµπ − 1)

)
dv

dt
. (3.11)

Now assume that there still remains relative motion between the string and the pulley.
When dv

dt
= 0, vmax is achieved, so using (3.11) we may obtain

v2max = Lg(1− e−µπ) +Rg
2µ

1 + µ2
(1 + e−µπ),

or

vmax =

√
Lg(1− e−µπ) +Rg

2µ

1 + µ2
(1 + e−µπ), (3.12)

from which we obtain the condition for case (1),

Rω >

√
Lg(1− e−µπ) +Rg

2µ

1 + µ2
(1 + e−µπ). (3.13)

But if this condition is not satisfied, the string sticks to the pulley, i.e.

vmax = Rω. (3.14)
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Problem 4 (35 points). Refer to Figure 4.1. A taut string of length L is placed along the x-axis, whose
left end is located at the origin. Both ends of the string can be attached to a vibration generator, which
drives oscillations in the y-direction. The speed of wave propagation is u.

x

y

O P1 P2

Figure 4.1: A vibrating string.

(1) (22 points). We fix the right end of the string P2 and connect the left end P1 to the generator.
When the system reaches a steady state, the displacement of the left end is given by y(x = 0, t) =
A0 cos(ωt), where A0 and ω are the amplitude and angular frequency of the oscillation respectively.

(i) (10 points). We are given that the transverse oscillation attenuates down the string with
coefficient γ > 0. Find the oscillation amplitude everywhere on the string, given that, for a
string of infinite length, the equation of a transverse wave travelling and attenuating in the
positive x direction is given by y(x, t) = Ae−γx cos (ωt− ωx/u+ ϕ), where A and ϕ are the
amplitude and initial phase of the oscillation at x = 0 respectively.

(ii) (12 points). We now ignore the effects of attenuation. Find the equation of the standing
wave on the string. Find also the positions of the nodes and antinodes of the standing wave.

(2) (13 points). We connect both ends of the string to the generator, such that the displacements of
P1 and P2 are given by y(x = 0, t) = A0 cosωt and y(x = L, t) = A0 cos(ωt+ ϕ0) respectively.
Ignoring the effects of attenuation, find the equation of the wave everywhere on the string for the
cases ϕ0 = 0 and ϕ0 = π respectively, and state the condition for the resonance frequency ω in
each case.

Solution 4:

(1) (i) The expression for the wave propagating rightwards on the string is given by

yR(x, t) = A1e
−γx cos

(
ωt− ωx

u
+ ϕ1

)
, (4.1)

where A1 and ϕ1 are constants to be determined. Since the right end is fixed, the wave
experiences a phase change of π as it is reflected off the right end. Thus the expression
for the wave propagating leftwards on the string is given by

yL(x, t) = A1e
−2γL+γx cos

(
ωt+

ωx

u
− 2

ωL

u
+ π + ϕ1

)
. (4.2)

Thus, once the system stabilises, the expression for the transverse oscillation along the
string is given by

y(x, t) = yL(x, t) + yR(x, t) = A(x) cos[ωt+ ϕ(x)],
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where

A(x) = A1

√
e−2γx + e−4γL+2γx − 2e−2γL cos

(
2
ω

u
x− 2

ωL

u

)
. (4.3)

Since the amplitude of oscillation at x = 0 is given, we have

A(x = 0) = A1

√
1 + e−4γL − 2e−2γL cos

(
2
ωL

u

)
= A0,

which leads to

A1 =
A0√

1 + e−4γL − 2e−2γL cos
(
2ωL
u

) . (4.4)

Hence, the amplitude of the transverse oscillation along the string is given by

A(x) =
A0√

1 + e−4γL

− 2e−2γL cos
(
2ωL
u

)
√
e−2γx + e−4γL+2γx − 2e−2γL cos

(
2
ω

u
x− 2

ωL

u

)
.

(4.5)

(ii) If we neglect the effects of attenuation along the string, the expression for standing
waves can be written asa

y(x, t) = A sin
(ωx
u

+ ϕ
)

cos(ωt+ φ). (4.6)

The boundary condition at the right end is given by y(x = L, t) = 0, so we have

ωL

u
+ ϕ = mπ, m = 0, 1, 2, . . .

We may take m = 0 so that

ϕ = −ωL
u
. (4.7)

The other values of m are merely trivial phase shifts of nπ which may be safely ignored.
Using the boundary condition at the left end, y(x = 0, t) = A0 cos(ωt), we obtain

A sin

(
−ωL
u

)
cos(ωt+ φ) = A0 cosωt.

As the equation above is valid over all t, we conclude that

A = − A0

sin
(
ωL
u

) , (4.8)

φ = 0. (4.9)

By substituting (4.8) and (4.9) into (4.6), the expression for standing waves becomes

y(x, t) = − A0

sin
(
ωL
u

) sin

(
ωx

u
− ωL

u

)
cos(ωt). (4.10)
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From (4.10) we know that the amplitude of the standing wave at position x is given by

A(x) =

∣∣∣∣∣ A0

sin
(
ωL
u

) sin

(
ωx

u
− ωL

u

)∣∣∣∣∣ .
At the nodes where x = xn, A(x) = 0, which implies that

sin

(
ωx

u
− ωL

u

)
= 0,

from which we obtain
xn = L− nπ u

ω
, (4.11)

where n is an integer satisfying the inequality

0 ≤ n <
Lω

πu
. (4.12)

At the antinodes where x = xa, A(x) is maximum, so we obtain

xa = L− π u

2ω
− lπ u

ω
, (4.13)

where l is an integer satisfying the inequality

0 < l <
Lω

πu
. (4.14)

(2) We decompose the expression for the transverse oscillation along the string into the super-
position of the expressions arising from two different sets of boundary conditions:

(A) Left end vibrates, right end fixed; and

(B) Left end fixed, right end vibrates.

Let y1(x, t) be the expression corresponding to scenario (A), and let y2(x, t) be the expression
corresponding to scenario (B). Using the results of (1)(ii), we write down the expression for
standing waves in (A):

y1(x, t) = − A0

sin
(
ωL
u

) sin

(
ωx

u
− ωL

u

)
cos(ωt);

And in (B):

y2(x, t) =
A0

sin
(
ωL
u

) sin
(ωx
u

)
cos(ωt+ ϕ0). (4.15)

When both ends are vibrating, the corresponding expression is the superposition of the
above two expressions, so we may write

y(x, t) = y1(x, t) + y2(x, t) =
A0

sin
(
ωL
u

) [sin(ωL
u
− ωx

u

)
cos(ωt) + sin

(ωx
u

)
cos(ωt+ ϕ0)

]
.

13
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When ϕ0 = 0, we have

y(x, t) =
A0

cos
(
ωL
2u

) cos

(
ωL

2u
− ωx

u

)
cosωt. (4.16)

When resonance occurs, cos(ωL/2u) = 0, so we obtain

ω =
(2n1 + 1)πu

L
, n1 = 0, 1, 2, 3, . . . (4.17)

When ϕ0 = π, we have

y(x, t) =
A0

sin
(
ωL
2u

) sin

(
ωL

2u
− ωx

u

)
cosωt. (4.18)

When resonance occurs, sin(ωL/2u) = 0, so we obtain

ω =
2n2πu

L
, n2 = 1, 2, 3, . . . (4.19)

aTranslator’s note. In China, φ and ϕ are treated as different symbols. They are not interchangeable.

14



Chinese Physics Olympiad

Problem 5 (35 points). An insulated, thin-walled container of mass M is placed in outer space, far
away from any celestial bodies, such that outer space can be modelled as a vacuum. The initial velocity
of the container is zero when observed in a certain inertial reference frame. The capacity of the container
is V , and it is initially filled with N0 molecules of a monatomic ideal gas, whose individual mass is m,
and whose initial temperature is T0. When t = 0, the container is punctured, and a hole of area S
appears on the wall. The container begins to move but does not rotate due to the gas leak. We assume
that the hole is small and that the ideal gas remains in thermodynamic equilibrium throughout the
process. We are given the Maxwell-Boltzmann distribution function

f(vx) =

√
m

2πkT
exp

(
−mv

2
x

2kT

)
for the x-component of the molecular velocity vx, where k is the Boltzmann constant. Find

(1) (6 points) the number of molecules escaping the container per unit area per unit time, in terms
of the molecular number density n and the temperature T of the gas at that instant;

(2) (6 points) the average kinetic energy of each molecule relative to the container, in terms of T ;

(3) (15 points) the temperature of the gas at time t; and

(4) (8 points) the speed of the container at time t.

Note. We are given the identities ∫ ∞
0

xe−Ax
2

dx =
1

2A
,∫ ∞

0

x2e−Ax
2

dx =
1

4

√
π

A3
, and∫ ∞

0

x3e−Ax
2

dx =
1

2A2
.

Solution 5:

(1) WLOG assume that the plane of the hole is orthogonal to the x-axis. In time dt, the number
of leaked gas molecules is equal to the number of gas molecules within a prism of volume
vxS dt whose velocity component in the x-direction is within the range vx to vx + dvx. The
required number, therefore, is given by nvxSvx dt dvx, where nvx is the number density of
molecules with x-velocity vx, and is related to n by the Maxwell-Boltzmann distribution
function:

nvx = nf(vx) = n

√
m

2πkT
exp

(
−mv

2
x

2kT

)
. (5.1)

Thus the average total number of leaked gas molecules per unit area per unit time is given
by

Nleak =

∫ ∞
0

nvxvx dvx =

√
m

2πkT

∫ ∞
0

vxn exp

(
−mv

2
x

2kT

)
dvx = n

√
kT

2πm
. (5.2)

(2) When the gas temperature is T , the average kinetic energy of the leaked gas molecules is
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given by

Ēk =
1

Nleak

∫ ∞
0

1

2
mv2xnvxvx dvx + kT, (5.3)

in which kT is the contribution of the velocity components in the y- and z-directions (two
additional degrees of freedom). Substituting (5.1) and (5.2) into (5.3), we obtain

Ēk =
1

n
√

kT
2πm

∫ ∞
0

1

2
mn

√
m

2πkT
v3x exp

(
−mv

2
x

2kT

)
dvx + kT

=
1√
kT
2πm

1

2
m

√
m

2πkT

1

2(m/2kT )2
+ kT = 2kT.

(5.4)

(3) As the hole is orthogonal to the x-direction, the velocity of the container will point along the
−x direction as a result of the gas leak in the +x direction, due to symmetry considerations.
When the time is t, let N be the number of molecules inside the container, and let u be
the speed of the container; and when the time is t + dt, let N + dN and u + du be the
corresponding values. Then momentum is conserved throughout the process, so we may
write

(M +Nm)u = [(M +Nm+m dN)(u+ du)]−m dN (u− v̄x), (5.5)

where v̄x is the average x-component of the velocity of leaked gas molecules in time dt; note
that dN is, of course, negative. Simplifying and omitting higher-order terms, we obtain

(M +Nm) du = −mv̄x dN . (5.6)

Energy is also conserved throughout the process, so we may also write

1

2
(M +Nm)u2 +

3

2
NkT =

1

2
(M +Nm+ dN m)(u+ du)2 +

3

2
(N + dN)k(T + dT )

− 1

2
dN m(u− vx)2 − dN kT,

(5.7)

where the two terms on the LHS are the translational kinetic energy and the internal energy
of the container before dtm, whereas the former two terms on the RHS are the translational
kinetic energy and internal energy of the container after dt, and the latter two represent the
average kinetic energy of the leaked gas molecules. Simplifying and omitting higher-order
terms as before, we obtain

(M +Nm)u du+
3

2
Nk dT +

1

2
kT dN +muv̄x dN − 1

2
mv2x dN = 0. (5.8)

Substituting (5.6) into (5.8) gives(
1

2
mv2x −

1

2
kT

)
dN =

3

2
Nk dT . (5.9)

Using the result of (5.4) we may write

1

2
mv2x + kT = 2kT

1

2
mv2x = kT
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Substituting this into (5.9), we obtain

1

2
kT dN =

3

2
Nk dT ,

which is just
dN

N
= 3

dT

T
. (5.10)

Integrating on both sides gives
T = CN1/3, (5.11)

where C is an unknown constant. Substituting in the initial conditions gives

T0 = CN
1/3
0 C =

T0

N
1/3
0

. (5.12)

Using (5.2), the number of gas molecules leaked in time dt is given by

dN = −N
V
S

√
kT

2πm
dt = −N

7/6

V
S

√
kC

2πm
dt . (5.13)

Integrating on both sides gives

N = N0

(
1 +

S

6V

√
kT0
2πm

t

)−6
. (5.14)

Hence we obtain our desired result,

T = CN1/3 = T0

(
1 +

S

6V

√
kT0
2πm

t

)−2
. (5.15)

(4) From (5.6) we obtain

du = − mv̄x dN

M +Nm
, (5.16)

in which v̄x is the average speed of the leaked gas molecules, which can be written as

v̄x =
1

Nleak

∫ ∞
0

vxnvxvx dvx =
1√
kT
2πm

∫ ∞
0

√
m

2πkT
v2x exp

(
−mv

2
x

2kT

)
dvx

=
1

4

1√
kT
2πm

√
m

2πkT

√
π

(m/2kT )3
=

√
πkT

2m
.

(5.17)

Substituting (5.17) into (5.16) gives

u(t) = −
∫ N(t)

N0

√
πmkT

2

dN

M +Nm
= −

√
πmkT0

2N
1/3
0

∫ N(t)

N0

N1/6 dN

M +Nm
(5.18)

When the mass of the container is far larger than the mass of the gas within, i.e. M � N0m,
the previous expression can be written approximately as

u(t) ≈ − 1

M

√
πmkT0

2N
1/3
0

∫ N(t)

N0

N1/6 dN = − 6

7M

√
πmkT0

2N
1/3
0

(
N(t)7/6 −N7/6

0

)
. (5.19)
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Substituting (5.14) into (5.19), we obtain our final expression for the speed of the container
at time t:

u(t) ≈ 6N0

7M

√
πmkT0

2

1−

(
1 +

S

6V

√
kT0
2πm

t

)−7 . (5.20)
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Problem 6 (35 points). The refractive index n of an optical medium can either be greater than or
less than zero. Media in which n < 0 are called negative-index meta-materials (NIMs). When light
propagates in a NIM, its optical path length is negative.1 If we say that the angle of refraction is
negative when the incident ray and refracted ray are on the same side of the normal, Snell’s law

n1 sin θ1 = n2 sin θ2

would still hold, even if the refractive index on either side were negative. Here, n1 and n2 can either be
positive or negative, and θ2 is the angle of refraction. We use the convention where θ1 ≥ 0 always.

(1) (10 points). Suppose that a beam of light is incident upon an interface between two materials
with different refractive indices. For each possible case as depicted in Figures 6.1 and 6.2, show
the path of the rays entering material 2 and the corresponding wavelets on the figures. Hence,
show that the generalised Snell’s law holds.

n1 > 0

n2 > 0

Figure 6.1

n1 > 0

n2 < 0

Figure 6.2

(2) (13 points). Refer to Figure 6.3. A spherical surface of radius R and centre C partitions three-
dimensional space into an outer region and an inner region, with refractive indices n1 > 0 and
n2 < 0 respectively. Considering any optical axis passing through C, we set the origin at O,
the intersection of the axis with the interface. Light ray x is incident upon the interface at M
and refracts to give ray y, as shown. Let s1 and s2 be the object distance and image distance
respectively. Under the paraxial approximation, derive the equivalent lens equation (a relationship
between s1, s2, and the given parameters of the system) and an expression for the magnification
of an image. Note down the sign of each quantity in the final results explicitly.

R

x

α1

y

α2

O C

β

M
θ1

θ2

Figure 6.3: A spherical NIM.

1When we say that the optical path length of a light ray is negative, we mean that, as the light propagates, its phase
change is the opposite of the case where it is propagating in a typical medium. In other words, we can model a light ray
travelling in a NIM of some refractive index n2 < 0 by treating it as if it were travelling in the opposite direction in a
medium of refractive index −n2 > 0.

19



Chinese Physics Olympiad

(3) (12 points). Suppose that medium 1 is air, i.e. n1 ≈ 1, and n2 can either take positive or negative
values. We place a thin convex lens of focal length f = 1.5R in front of the spherical interface such
that its optical axis passes through C, one focal point is inside the NIM, and the distance between
O and the centre of the lens O′ is d. A beam of light rays all parallel to the axis is incident upon
the lens. For each set of parameters in Table 6.1, obtain the distance between O and the point at
which all light rays converge. Also draw a figure illustrating the path of the light rays in case 4.

Case n2 d
1 1.5 0.35R
2 1.5 0.85R
3 −1.5 0.35R
4 −1.5 0.85R

Table 6.1

Solution 6:

(1) For the case n1 > 0 and n2 > 0, we draw Figure 6.4. Let AB be a wavefront, along which
the wave has the same phase. When the wave at B reaches B′, the front of the wavelet
propagating from A is a hemispherical surface of radius r situated within medium 2, whose
intersection with the incident plane is a semicircle also of radius r. r is, in turn, determined
by

n2r = n1BB
′. (6.1)

Let line A′B′ be the tangent of the line from B′ to the wave at A′; then A′B′ is also a
wavefront. By the results of geometry, we have

BB′ = AB′ sin θ1,

r = AB′ sin θ2,

from which it is straightforward to derive Snell’s law:

n1 sin θ1 = n2 sin θ2. (6.2)

We now treat the case n1 > 0 and n2 < 0. Recall that the optical path length of light
travelling in medium 2 is negative.

Alternative 6.1. As shown in Figure 6.5a, the wavelet propagating from B′ is given by the
semicircle of radius r situated within medium 2, and the corresponding optical path length
is given by n2r < 0. Therefore, the wavefront including A is given by the tangent from
A to this semicircle, whose point of tangency we name A′. The radius of the semicircle is
determined by

n1BB
′ + n2A

′B′ = 0. (6.3)

By geometry
BB′ = AB′ sin θ1, B′A′ = AB′ sin |θ2|,

from which we may derive the generalised Snell’s law:

n1AB
′ sin θ1 = −n2AB

′ sin |θ2| = n2AB
′ sin θ2 (6.4)

n1 sin θ1 = n2 sin θ2. (6.5)
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Alternative 6.2. As shown in Figure 6.5b, AB is a wavefront of the incident light. When
the wave at B reaches B′, the wavelet propagating from A is a circle of centre A and radius
r, corresponding to the optical path length given by n2r < 0. The radius is determined by

|n2|r = n1BB
′. (6.3)

Since the optical path length is negative, we may as well treat the wavefronts in medium 2
as moving in the opposite direction as compared to the typical case, i.e. away from medium
2 and towards medium 1. Thus the wavelet of interest is the dashed semicircle in Figure
6.5b. If we construct line B′A′ tangent to the semicircle at A′, then B′A′ is a wavefront. By
geometry

BB′ = AB′ sin θ1, r = AB′ sin |θ2|, (6.4)

so we obtain
n1 sin θ1 = n2 sin θ2. (6.5)

(2) We take s1 > 0 when the object is outside the NIM and s2 > 0 when the image is inside the
NIM; the reverse is true for s1 < 0 and s2 < 0. We take θ1 > 0 (incident angle) and θ2 < 0
(refracted angle), and take all other named angles in Figure 6.3 as positive. We notice that

θ1 = α1 + β, −θ2 = α2 − β. (6.6)

Under the paraxial approximation, all these angles are small, so we have

sin θ1 = θ1, sin θ2 = θ2

and

tanα1 = sinα1 = α1 =
h

s1
,

tanα2 = sinα2 = α2 =
h

s2
,

tan β = sin β = β =
h

R
,

(6.7)

where h is the distance of the point of incidence M from the optical axis. Snell’s law yields

n1 sin θ1 = n2 sin θ2

n1

(
h

s1
+
h

R

)
= −n2

(
h

s2
− h

R

)
(6.8)

n1

s1
+
n2

s2
=
n2 − n1

R
, (6.9)

where (6.9) is the required effective lens equation. Note that since n2 < 0 and n1 > 0, the
RHS of (6.9) is negative.

To find the magnification, we draw Figure 6.6 and consider object Q1P1 and its image, Q2P2.
Now suppose we rotate the parts in blue clockwise about C, bringing points Q1, O, and
Q2 along with them, such that P lies on the rotated optical axis. Let Q′1, O

′, and Q′2 be
the transformed positions of the previously-named points respectively. Under the paraxial
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A

B

A′

B′θ1
θ1

θ2

θ2

Figure 6.4: Huygens’s principle applied to a typical material.

approximation, since the angle through which the blue parts are rotated by is small, we may
write

Q1P1 = Q1Q
′
1,

Q2P2 = Q2Q
′
2.

(6.10)

Thus by the above and geometry we have

Q1P1 = s1θ1, (6.11)

Q2P2 = s2θ2, (6.12)

which yields our desired magnification,

Q2P2

Q1P1

=
−s2θ2
s1θ1

= −s2n1

s1n2

. (6.13)

(3) As shown in Figure 6.7, if the spherical NIM is absent, then the light rays would converge
at the focus of the convex lens after passing through it, as shown by the dashed lines. When
the NIM is introduced, the original point of convergence becomes the virtual object awaiting
transformation by the NIM, so the corresponding object distance is given by

s1 = −(f − d). (6.14)

If n2 > 0, the equivalent lens equation is given by (this is in the syllabus of CPhO finals):

n1

s1
+
n2

s2
=
n2 − n1

R
, (6.15)

which is of the same form as (6.9). Solving for s2 in both cases yields

s2 =
n2s1R

n2s1 − n1(s1 +R)
=

n2R(f − d)

(n2 − n1)(f − d) + n1R
. (6.16)

The required results are shown in Table 6.2. The required diagram is shown in Figure 6.7.
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A

B

A′

B′θ1
θ1

θ2

θ2

Figure 6.5a: Huygens’s principle applied to a
NIM.

A

BA′

B′

θ1

θ1

θ2

|θ2|

Figure 6.5b: Huygens’s principle applied to a
NIM—Alternative.

O C

R

Q1

P1

Q2

P2
O′

Q′1

Q′2

s1 s2
θ1 θ2 β

Figure 6.6: Construction for finding the magnification of the spherical NIM. Location of Q′1 and Q′2
not to scale for clarity.

Case n2 d s2
1 1.5 0.35R 1.10R
2 1.5 0.85R 0.74R
3 −1.5 0.35R 0.92R
4 −1.5 0.85R 1.56R

Table 6.2

OO′

C

R

s2 = 1.56R

Figure 6.7: Ray diagram for lens-NIM setup.
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Problem 7 (35 points). Modelling the physical behaviour of solids, which often have complicated
internal structures, can be quite challenging using conventional means alone. If we wish to simplify the
problem while still taking the interactions between constituent particles into account, we may use the
concept of quasiparticles, for which the energy-momentum relation may be different from the one which
usually applies to real particles. When external electric or magnetic fields are applied on a solid, the
motion of quasiparticles can typically be treated with the methods of classical mechanics.

One type of quasiparticle of effective mass m and carrying charge q exists within some two-dimen-
sional interface-like structure. Its motion is constrained to the xy-plane. Its kinetic energy K can be
expressed in terms of the magnitude of its momentum p by the equation

K =
p2

2m
+ αp

where α is a positive constant.

(1) (4 points). For a real particle of mass m in free motion, its kinetic energy K can be expressed in
terms of the magnitude of its momentum p by K = p2/2m. Express its velocity v in terms of its
momentum p using the work-energy theorem.

(2) (5 points). Using a similar method, express the velocity v of a quasiparticle in terms of its
momentum p.

(3) (4 points). Express v = |v| in terms of K.

(4) (11 points). We now place the two-dimensional interface within a uniform magnetic field of
magnitude B and pointing in the +z direction. For a quasiparticle of kinetic energy K, which will
undergo uniform circular motion, find the radius of its trajectory, the period of its motion, and
the magnitude of its angular momentum.

(5) (11 points). We replace the magnetic field with a uniform electric field of magnitude E and pointing
in the +x direction. Note that the component of the quasiparticle’s acceleration perpendicular to
the electric field may be nonzero. Find the components of the quasiparticle’s acceleration ax and
ay when it moves with speed v and its velocity makes an angle θ with the electric field.

Solution 7:

(1) The work-energy theorem gives us

dK = F · dr =
dp

dt
· dr = v · dp . (7.1)

Differentiating the given energy-momentum relation for real particles on both sides with
respect to p also gives us

dK =
p

m
· dp , (7.2)

in which we note that d(p2) = d(p · p) = p · dp + dp · p = 2(p · dp). Setting the RHS’s of
(7.1) and (7.2) equal, we have ( p

m
− v

)
· dp = 0,
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and combined with the fact that the above is true for all dp, we confirm that

v =
p

m
, (7.3)

and that we haven’t gone insane (yet).

(2) Differentiating the given energy-momentum relation for quasiparticles on both sides with
respect to p gives us

dK =
p

m
· dp + αp̂ · dp . (7.4)

Again setting the RHS’s of (7.1) and (7.4) equal, we have( p
m

+ αp̂− v
)
· dp = 0,

and by the same argument

v =
p

m
+ αp̂. (7.5)

(3) Squaring (7.5) on both sides, we obtain

v2 =
p2

m2
+ 2α

p

m
+ α2 =

( p
m

+ α
)2
,

so
v =

p

m
+ α. (7.6)

Making p the subject of the energy-momentum relation for quasiparticles, we have

p = −mα +
√
m2α2 + 2mK, (7.7)

so substituting (7.7) into (7.6), we obtain

v =

√
α2 +

2K

m
. (7.8)

(4) In a uniform magnetic field, the quasiparticle undergoes uniform circular motion with speed
v = ωR and rate of change of momentum | dp/dt | = ωp, so∣∣∣∣dpdt

∣∣∣∣ =
v

R
p. (7.9)

The quasiparticle experiences a Lorentz force related to the above by

p
v

R
= qvB, (7.10)

so substituting in (7.7), we obtain the radius of the quasiparticle’s trajectory

R =
p

qB
=
−mα +

√
m2α2 + 2mK

qB
, (7.11)
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the period of its motion

T =
2πR

v
=

2π
(
−mα +

√
m2α2 + 2mK

)
qB
√
α2 + 2K

m

, (7.12)

and, since the magnitude of its angular momentum is given by

L = pR, (7.13)

we may substitute (7.7) and (7.11) into (7.13) to obtain

L =
2m2α2 + 2mK − 2mα

√
m2α2 + 2mK

qB
. (7.14)

(5) (7.5) gives us
p = mv −mαv̂, (7.15)

keeping in mind that p̂ = p/p and similar. Newton’s second law yields

dp

dt
= qE. (7.16)

Alternative 7.1. The acceleration of the quasiparticle is given by

dv

dt
= α

d

dt

(v
v

)
+

q

m
E, (7.17)

or, written out by components,

ax =
α

v

dvx
dt
− αvx

v2
dv

dt
+
qE

m

ay =
α

v

dvy
dt
− αvy

v2
dv

dt
.

Using the kinematic relation
dv

dt
=
vx
v
ax +

vy
v
ay, (7.18)

we may rewrite (7.17) as 
(

1− α

v
+
αv2x
v3

)
ax +

αvxvy
v3

ay =
qE

m(
1− α

v
+
αv2y
v3

)
ay +

αvxvy
v3

ax = 0,

(7.19)

which, in turn, may be rewritten without vx and vy as
(

1− α sin2 θ

v

)
ax +

α sin θ cos θ

v
ay =

qE

m(
1− α cos2 θ

v

)
ay +

α sin θ cos θ

v
ax = 0.

This system of equations may be solved to obtain our desired result,
ax =

qE

m
+
qE

m

α sin2 θ

v − α

ay = −qE
m

α cos θ sin θ

v − α
.

(7.20)
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Alternative 7.2. In Cartesian coordinates,
dp

dt
cos θ − p sin θ

dθ

dt
= qE

dp

dt
sin θ + p cos θ

dθ

dt
= 0,

(7.17)

from which we solve for the time derivatives and obtain
dp

dt
= qE cos θ

dθ

dt
= −qE

p
sin θ.

(7.18)

Splitting (7.5) into components and differentiating with respect to time yields
ax =

dvx
dt

=
d

dt

(( p
m

+ α
)

cos θ
)

=
1

m
cos θ

dp

dt
−
( p
m

+ α
)

sin θ
dθ

dt

ay =
dvy
dt

=
d

dt

(( p
m

+ α
)

sin θ
)

=
1

m
sin θ

dp

dt
+
( p
m

+ α
)

cos θ
dθ

dt
.

(7.19)

Substituting (7.18) into (7.19) and using (7.5) yields our final result,
ax =

qE

m
+
qE

m

α sin2 θ

v − α

ay = −qE
m

α cos θ sin θ

v − α
.

(7.20)

Alternative 7.3. (7.15) can be decomposed into its components and written as{
px = m(v − α) cos θ

py = m(v − α) sin θ.
(7.17)

From (7.16) and (7.17) we obtain
−m(v − α) sin θ

dθ

dt
+m cos θ

dv

dt
= qE

m(v − α) cos θ
dθ

dt
+m sin θ

dv

dt
= 0,

(7.18)

from which we solve for the time derivatives and obtain
dv

dt
=
qE

m
cos θ

dθ

dt
= −qE

m

sin θ

v − α
.

(7.19)

Substituting (7.19) into the system
ax =

dvx
dt

=
dv

dt
cos θ − sin θ

dθ

dt

ay =
dvy
dt

=
dv

dt
sin θ + cos θ

dθ

dt
,

we obtain our desired result, 
ax =

qE

m
+
qE

m

α sin2 θ

v − α

ay = −qE
m

α cos θ sin θ

v − α
.

(7.20)

27



Chinese Physics Olympiad

Problem 8 (35 points). When thermal radiation is incident upon a reflector, the reflector can do work
on its surroundings with the radiation pressure supplied by the thermal radiation. This process can be
studied by either using the principles of mechanics or those of thermodynamics. For simplicity, we model
the thermal radiation as a one-dimensional beam of black-body radiation which is normally incident
upon an ideal plane reflector. The radiation pressure acting upon the reflector is in balance with a
resistive force such that the reflector undergoes uniform motion with speed v, in the same direction as
the radiation. We are given the vacuum speed of light c and the spectral radiance2 of one-dimensional
black-body radiation as a function of the frequency ν and the black-body temperature T

ϕ(ν, T ) =
2hν

ehν/kT − 1
,

as measured in the laboratory reference frame, where h is the Planck constant and k is the Boltzmann
constant.

(1) (14 points). We may conduct an analysis using mechanics. By considering the collision of the pho-
tons in the thermal radiation with the reflector, find the efficiency η of the reflector in converting
the energy of the photons to the work done against drag, as observed in the lab frame.

(2) (15 points). An analysis with classical thermodynamics offers a different perspective. We may
treat the setup as an ideal heat engine, with the reflector as the working substance. The incoming
radiation can be modelled as the reflector absorbing heat from a hot reservoir, whereas the outgoing
radiation can be modelled as the reflector releasing heat to a cold reservoir, with the reflector
returning to its initial state. Using this model, show that the spectral radiance profiles of both
the incoming and outgoing radiation, as observed in the reference frame of the reflector, fit that
of black-body radiation, and find the efficiency of the reflector in the reflector frame.

(3) (6 points). Find the efficiency of the suggested heat engine as observed in the laboratory frame.

Solution 8:

(1) We consider the system composed of the reflector in uniform motion, as well as all the
photons which collide with reflector per unit time. Let ε1 and ε2 (having the dimensions of
power) be the total energy of these photons before reflection and after reflection respectively,
and let F be the magnitude of the resistive force. The mechanical energy and momentum of
the reflector remains the same before and after the collisions, and the ratio of the photons’
energy to their momentum is the vacuum speed of light c, independent of their frequency.
Thus, the impulse-momentum theorem and the work-energy theorem yields

−ε1
c
− ε2

c
= −F, (8.1)

ε2 − ε1 = −Fv. (8.2)

The required efficiency of conversion is given by

η =
Fv

ε1
, (8.3)

2Spectral radiance in frequency is the radiant flux received by a surface (in this case, the reflector) per unit frequency
per unit time. For a more detailed explanation, see the Wikipedia article Irradiance.
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which, when the value of ε1 is obtained from solving (8.1) and (8.2) simultaneously and
substituting into (8.3), yields

η =
2v

c+ v
. (8.4)

(2) Due to the relativistic Doppler effect (in-syllabus), the incident frequency ν1 in the lab frame
S is redshifted to ν ′1 in the reflector rest frame S ′, and the relationship between the two
frequencies is given by

ν ′1
ν1

=

√
c− v
c+ v

, (8.5)

in which we note that the ratio of frequencies is independent of the incident frequency ν1
and only dependent on the speed v of the reflector.

Suppose that during time interval dt1, for a cross-section of the path of incidence observed
in frame S, a pulse of EM waves completely passes through this cross-section. When the
pulse reaches the reflector, in frame S ′ the pulse takes time interval dt′1 for the whole length
to be reflected. Since the number of periods in the pulse detected at the cross-section must
be equal to that in the pulse detected at the reflector, we have

ν1 dt1 = ν ′1 dt′1 . (8.6)

Let ϕ1(ν1) and ϕ′1(ν
′
1) be the spectral radiance profiles of the incident radiation as measured

in frames S and S ′ respectively. Consider the number of photons passing through said
cross-section in time interval dt1 and of frequency in the interval [ν1, ν + dnu1], as observed
in S. All these photons arrive at the reflector and collide with it within time interval dt′1,
so setting the numbers of photons in each case equal, we have

ϕ1(ν1) dν1 dt1
hν1

=
ϕ′1(ν

′
1) dν ′1 dt′1
hν ′1

. (8.7)

Thus by (8.5), (8.6), and (8.7), we obtain

ϕ1(ν1)

ν1
=
ϕ′1(ν

′
1)

ν ′1
. (8.8)

In frame S ′, the incident frequency and reflected frequency are equal, i.e.

ν ′2
ν ′1

= 1. (8.9)

Noting that, in frame S ′, the numbers of periods in the incident and reflected EM waves
are equal, the number of photons in each wave are equal, and that these hold true for all
frequencies, we may argue in a manner similar to the derivation of (8.8) that the relationship
between ϕ′1(ν

′
1) and ϕ′2(ν

′
2) is given by

ϕ′1(ν
′
1)

ν ′1
=
ϕ′2(ν

′
2)

ν ′2
. (8.10)

Let T1 be the temperature corresponding to the incident black-body radiation. Then

ϕ1 =
2hν1

ehν1/kT1 − 1
. (8.11)
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By (8.5), (8.8), (8.9), (8.10), and (8.11), in frame S ′ the spectral radiance profiles of the
incident and reflected radiation are given by

ϕ′1 =
2hν ′1

ehν
′
1/kT

′
1 − 1

, (8.12)

ϕ′2 =
2hν ′2

ehν
′
2/kT

′
2 − 1

, (8.13)

where T ′1 and T ′2 are given by

T ′1 =
ν ′1
ν1
T1 =

√
c− v
c+ v

T1, (8.14)

T ′2 =
ν ′2
ν ′1
T ′1 = T ′1 (8.15)

respectively. Thus we have shown that these profiles are of the same form as that of black-
body radiation of the appropriate temperature.

Since the heat engine is ideal, we may apply Carnot’s theorem and obtain the extremely
troll result of

η′ = 1− T ′2
T ′1

= 0. (8.16)

This wholly unexpected (and troll) result (to a contestant battered into submission by the
previous problems and parts) is actually obvious in hindsight and in line with the predictions
of mechanics, for in the rest frame of the reflector, the displacement of the reflector is zero,
so it does no work on the surroundings; thus the work done using the energy of the photons
must also be zero.

(3) The observed work done and photon energy are both dependent on the chosen reference
frame, so the observed efficiency in the reflector frame and the lab frame must also necessarily
be different. This discrepancy can be reconciled by noting that the reflected frequency ν ′2
as observed in frame S ′ is redshifted to ν2 in frame S, so we have

ν2
ν ′2

=

√
c− v
c+ v

. (8.17)

By a similar argument as the derivation of (8.12), we obtain the spectral radiance profile of
the reflected radiation as observed in S,

ϕ2 =
2hν2

ehν2/kT2 − 1
, (8.18)

which has the same form as black-body radiation of temperature

T2 =
ν2
ν ′2
T ′2 =

c− v
c+ v

T1, (8.19)

whose derivation involves (8.14), (8.15), and (8.17). Finally, by Carnot’s theorem, we obtain
the efficiency

η = 1− T2
T1

=
2v

c+ v
, (8.20)

which agrees with the result derived using mechanics.
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