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1 Problem 1

Originally, there is only one set of springs of constant k, meaning a weight W would result in a

compression of W/k. After adding the new set of springs, the effective spring constant is

1

keff
=

1

k
+

1

2k
=⇒ keff =

2k

3

which means a weight W0 would result in a total compression of 3W0/(2k). Therefore:

W ′

k
=

3W0

2k

W ′

W0
=

3

2
=⇒ B

2 Problem 2

Note that the string has no way of dissipating energy, so the velocity remains at a constant v.

Between consecutive collisions of the string with each corner, the length of the string is constant,

so the mass undergoes uniform circular motion. Therefore, the total time is the sum of times taken

to traverse each circular arc, which is

t =
7πa

2v
+

6πa

2v
+ · · ·+ 2πa

2v
+

πa

2v
=

14πa

v
=⇒ B

3 Problem 3

The maximum height is achieved by the hole in which the water shoots straight up. If the initial

speed of water through the hole is v, then by continuity, the new speed v′ of water going through a

singular hole is

Nv = v′

Since h ∝ v2, h′ = N2h =⇒ D



2 4. Problem 4

4 Problem 4

Let us consider the rotating reference frame of the four-way pipe. When the water initially leaves,

it has a velocity v that is parallel to one of the pipes. Afterwards, it is affected by a coriolis

acceleration −2ω × v that points in the opposite direction of rotation. Note that the shape of the

water relative to the pipes should be the same in all reference frames. Therefore, the only choice

that satisfies both the parallel exit velocity and coiling in the opposite direction of the rotation is

E .

5 Problem 5

The amount of energy required to take out a cubical crater of length L is proportional to

E ∝ mgL ∝ ρL3gL

A meteor with twice the mass will be able to provide twice the energy. Therefore, the linear size of

the crater will be 21/4 larger, and its volume will be 23/4 times larger, implying D .

6 Problem 6

The weight of the cylinder is negligible, so the total normal force of the ground on the cylinder

is 10 N. By symmetry, the normal pressure is equal at all contact points and the frictional force

is similarly equal in magnitude at all points, pointing in the opposite direction to the cylinder’s

rotation. Therefore, summing up all the frictional works of each point, the total rate at which heat

is being dissipated is

P = µNv = µNωR

Therefore

∆Q = Pt = 0.6t =⇒ A

7 Problem 7

The tower will be stable if its center of mass is located within its area of support. If we set the

origin of our coordinate system to be the bottom left corner, that’s equivalent to saying

xcm ≤ b

Calculating xcm:

xcm =
b/2 + b/2 + a/2

3
=

2b+ a

6

Yields:

2b+ a ≤ 6b

a/b ≤ 4 =⇒ C



3 8. Problem 8

8 Problem 8

Suppose the rod had an angle ϕ with the horizontal. In a time t, the bead would travel a distance

d =
1

2
at2 =

1

2
gt2 sinϕ

along the rod. Now consider the set of points that can be reached from P in a time t. That set of

points has a radial distance r ∝ sinϕ, which you may recognize as the polar form of a circle! In

particular, the set of points reachable in time t is a circle with P as its uppermost point.

From this information, we can determine that the shortest time is reached if the rod is placed at

the tangency point of two circles: the circle centered at the origin, and the circle whose upper most

point is P and is tangent to the circle centered at the origin. Using geometry, we can determine

that

θ ≈ 53◦ =⇒ B

9 Problem 9

Suppose the small hole has area A. Just before breaking, the tape experiences a force

6 N = PA = (ρgh)A

After breaking, water exits at a velocity of
√
2gh. By momentum conservation, the force that the

exiting water exerts on the remaining water is

F =
dp

dt
=

dm

dt
v = ρAv2 = 2ρghA = 12 N =⇒ D

10 Problem 10

By conservation of angular momentum,

Icmω0 = Iω

It is well known that Icm = MR2/2, and by the parallel axis theorem

I = Icm +M(R/3)2 =
11

18
MR2

Therefore:

ω =
9

11
ω0 =⇒ E

11 Problem 11

Suppose the low density solid we are trying to measure has a volume V . Let us call the density of

the gas ρg. The true weight of the solid is ρ1V , but the scale results the measurement of a weight



4 12. Problem 12

(ρ1 − ρg)V

Therefore, the relative error is

ρg
ρ1

= 2% =⇒ E

12 Problem 12

The ladder experiences 5 forces: two normal forces, two frictional forces, and the weight of the

construction worker. However, for the maximum height not to slip, the frictional forces will be

maximized to µN , so in fact we can combine each of the friction+normal pairs to get 3 effective

forces. Finally, each of the lines of the “3” forces, if extended, must intersect at a single point in

order for torque to be balanced, because otherwise we can take torque about the point of intersection

of two forces and find a non-zero torque.

Let us find the position of the construction worker in this scenario. Suppose the ladder is located

in the first quadrant, and the x and y axes are the ground and wall respectively. The lines that the

forces from the wall and the ground make are

y = L sin θ + µx

y = − 1

µ
(x− L cos θ)

respectively. These lines intersect at an x value of

x =
L(cos θ − µ sin θ)

1 + µ2

which corresponds to a y value on the ladder of

y = L sin θ − x tan θ = 0.15 m =⇒ A

13 Problem 13

Pressure increases linearly with depth, so the average pressure from the water on the dam is ρgH/2.

Therefore, the total force is

F = PA =
1

2
ρgH2L =⇒ C

14 Problem 14

While falling, both masses fall at the same rate. Therefore, the mass within stays at its equilibrium

position during the fall. When the box hits the ground, it immediately slows to a stop, whereas the

mass within still has a velocity
√
2gH. The maximum compression achieved by the mass within

can be determined by conservation of energy:



5 15. Problem 15

1

2
kx2 = mgH

x =

√
2mgH

k

For the box to jump up afterward, kx must be greater than mg:

kx =
√
2mgHk > mg

H >
mg

2k
=⇒ C

15 Problem 15

Angular momentum is conserved throughout this process, so

d

dt
L =

d

dt
(Iω) =

dI

dt
ω + I

dω

dt
= 0

dω

dt
= −dI

dt

ω

I
= −1

2
(0.2 · π12)12 · 10

(1/2)2 · 12
= −π =⇒ D

16 Problem 16

The total momentum, which is conserved, is 0. Therefore, the center of mass is stationary. From

inspection, we know that the center of mass is initially within the black curve, so it must always be

below the black curve. From these two facts alone, we can eliminate all other choices:

• Choice A satisfies both these requirements. =⇒ A

• Choice B has moments where the center of mass is above of the black curve.

• The initial momentum of Choice C does not even satisfy the problem’s requirements.

• Neither does the initial momentum of Choice D.

• In Choice E, the momentum quickly becomes nonzero.

17 Problem 17

In the accelerating reference frame of the center of mass of the firework, the firework bursts into

a sphere where each portion of the firework has equal speed. Since fragments with equal height in

the sphere will hit the ground at the same time, the number of fragments that hit the ground at

a certain time is proportional to the circumference of the circular cross-section of the sphere that

intersects with the ground. Therefore, the number of fragments will increase, reach a maximum,

then decrease =⇒ C .



6 18. Problem 18

18 Problem 18

Adding the springs from top to bottom is annoying to calculate. Instead, we can consider each

iteration to be equivalent to taking the existing contraption and hanging it on a new mass, then

hanging this new contraption with a spring. That way, it is clear that the increase in length for

each iteration of the process is equal to the length of the top spring.

The length of the top spring for the iteration of N springs is:

l0 +∆x = l0 +
Nmg

k

So the total length of the springs is:

N∑
i=1

(
l0 +

img

k

)
= Nl0 +

N(N − 1)

2

mg

k

Setting this total length to be greater than or equal to the height of the room yields a quadratic

with solution

N = 11 =⇒ D

19 Problem 19

Note that since the center of mass of the table is stationary, all the oscillations described in this

problem excite only one normal mode. When point A is pushed down, the motion is equivalent to

that of a rod, with two springs of constant 2k at each end, and opposite sides of the table alternate

going up and down. For a small tilt from the horizontal of angle θ, the torque equation about the

center of mass becomes

1

12
ma2θ̈ = −4k

a

2
θ · a

2

ω0 =

√
12k

m

When point B is pressed down, the motion is such that the opposite corners alternate going up

and down. Note that the moment of inertia across the diagonal of the square, by the perpendicular

axis theorem, is equal to the moment of inertia about an axis in the plane of the square that bisects

the two opposite sides. However, there are two springs involved instead of four, the lever arm is a

factor of
√
2 greater, and the linear elongation in the springs per unit θ is a factor of

√
2 greater,

therefore the oscillation frequency is also

ω =

√
12k

m

Therefore ω = ω0 =⇒ C .



7 20. Problem 20

20 Problem 20

If there’s no friction interaction between the rings, the rotations of each ring does not affect the

velocities of the collision. Further, during the collision, friction from the ground does not have

time to act on the rings. Therefore, the linear velocities change exactly as if it were an elastic collision.

From this fact, the premise becomes clear. Initially, both rings roll without slipping until the

collision, when the ratios of linear to rotational velocity is offset, which allows friction to act on

the rings. If friction is sufficient, it may result one of the rings moving in the opposite direction,

causing a second or perhaps even more collisions.

Since the masses are equal, the velocities v1 and v2 simply swap. After the first collision, the ring

A is suddenly rotating too fast (ω1 = 10/R > v/R) for its linear speed; therefore, friction points

forwards to decelerate its angular speed while accelerating its linear speed:

ma = +µmg =⇒ a = +µg

mR2α = −µmgR =⇒ Rα = −µg

Both accelerations stop when ω = v/R, indicating rolling without slipping. Note that due to

the nice setup, a = −Rα, so v and Rω simply meet at their average, which is 6 m/s. The linear

distance travelled during this time is given by the kinematic equation

v2f = v2i + 2adA

dA =
72 − 42

2µg
= 1.65 m

A similar analysis on ring B shows that it also ends up at 6 m/s after the collision and friction

act on it, but during the same amount of time, ring B travels a distance dB = 2.55 m. Since they

both end up with the same velocity after the first collision, the two rings’ separation stays constant

afterwards. Therefore, the final separation is 0.9 m =⇒ A .

21 Problem 21

Since the cloud is uniform, the amount of dust collected is proportional to the distance x travelled.

Suppose the length that can be traversed in time T0 without dust is L0. Then m(x) is

m(x) = m+ δm
x

L0

By momentum conservation mv is constant. Therefore:

v(x) = v0
m

m(x)

The time needed to traverse the length L0 is

∫
dx

v
=

∫ L0

0

dx

v0

(
1 +

δm

m

x

L0

)
=

L0

v0
+

δm

mv0L0

L2
0

2
= T0

(
1 +

δm

2m

)
= 1.01T0 =⇒ B



8 22. Problem 22

Note that calculus is only necessary for the exact solution. For an approximate solution, note that

to first order, v(x) is

v(x) ≈ v0

(
1− δm

m

x

L0

)
which is a linear function with average velocity

v ≈ v0

(
1− δm

2m

)
After which we get a similar answer as before:

T =
L0

v
≈ T0

(
1 +

δm

2m

)
= 1.01T0

22 Problem 22

The thrust required to keep the spaceship in that position is

Fnet = F −
GMmf

4R2
=

dp

dt
=

dm

dt
v = µv

F =
GM(m0 + µR/v)

4R2
+ µv = const.+ µ

(
GM

4Rv
+ v

)
which by AM-GM is minimized when v =

√
GM/4R =⇒ A

23 Problem 23

Angular momentum of the spaceship is conserved. Therefore, we know the answer should depend

on both ρ0 and ρ, since as ρ → 0 the time it takes to slow down should go to infinity (since massless

dust can’t obtain angular momentum and slow down the spaeship), and ρ0 → ∞ should achieve

similar results (since the dust is essentially massless relative to the spaceship). Therefore, in an

expression for time, ρ should be in the denominator and ρ0 should be in the numerator. The only

answer choice that satisfies both of these requirements is C .

24 Problem 24

There are two velocities involved: the daily rotation of the Earth and the velocity at which Earth

revolves around the Sun. The latter is the much greater contributor, and it has a magnitude of

2πa

T
=

2π × 1.5× 1011 m

365× 24× 3600 s
≈ 3× 104 m/s =⇒ B



9 25. Problem 25

25 Problem 25

The angular impulse about the center of mass of the square due to the impulse J has magnitude

Ja/
√
2. This causes the square to obtain an angular velocity

ω =
Ja

I
√
2

where I is the moment of inertia of the square across the diagonal. Note that by the perpendicular

axis theorem, the moment of inertia about a diagonal of a uniform square is equal to the moment

of inertia through an axis that bisects two opposite sides. Therefore I = (2m)a2/12 and

ω =
3
√
2J

ma

Now, we turn to the rotational dynamics after the impulse. The tensions must provide the centripetal

acceleration of each triangle to keep them rotating at a speed ω. The appropriate equation is

2T = mω2rcm

It is well known that the center of mass of a uniform triangle is located at its centroid, which

by geometry can be found to be a radial distance rcm =
√
2a/6 away from the center of rotation.

Therefore

T =
1

2
m

18J2

m2a2

√
2a

6
=

3
√
2J2

2ma
=⇒ ???
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